Hinweis auf die DSGVO: Auf unserer Seite werden keine Dritt-Anbieter-Cookies verwendet und nur Daten erfasst, welche für das Minimum an Board-Funktionalität notwendig sind.
Bevor Sie sich registrieren oder das Board verwenden, lesen Sie bitte zusätzlich die DSGVO-Erklärung, welche in der Navigationsleiste verlinkt ist.

Kurzfassung der unserer Meinung nach wichtigsten DSGVO-Punkte:
Es kann vorkommen, dass Benutzer eigenverantwortlich Videos oder sonstige Medien in ihren Beiträgen verlinken, welche beim Aufruf der Forenseite als Teil der Seite samt zugehörigem Material mitgeladen werden. Sollten Sie dies nicht wünschen, verwenden Sie beim Benutzen des Forums einen Blocker wie z.B. uMatrix, welcher das Laden von Inhaltsblöcken von Fremd-URLs effektiv unterbinden kann.
Wir blenden keine Werbung ein und schränken die Inhalte in keinster Weise bei Benutzung von Addblockern ein. Dadurch ist die Grundfunktionalität des Forums auch bei vollständigem Blockieren von Drittanbieter-Inhalten stets gegeben.

Cookies werden unsererseits nur verwendet um das Einloggen des Benutzers für die Dauer der Forenbenutzung zu speichern. Es steht dem Benutzer frei die Option 'Angemeldet bleiben' zu verwenden, damit der Cookie dauerhaft gespeichert bleibt und beim nächsten Besuch kein erneutes Einloggen mehr notwendig ist.
EMail-Adressen werden für Kontakt bei wichtigen Mitteilungen und zur Widerherstellung des Passwortes verwendet. Die verwendeten IPs können von uns ohne externe Hilfsmittel mit keiner realen Person in Verbindung gebracht werden und werden nach spätestens 7 Tagen gelöscht. Diese IPs werden höchstens verwendet um Neuanmeldungen unerwünschter oder gesperrter Nutzer zu identfizieren und zu unterbinden. Wir behalten uns daher vor bei Verdacht, die Frist für die IP-Löschung auf maximal 14 Tage zu verlängern.
Unsere Webseite läuft auf einem virtuellen Linux-Server, welcher von einem externen Anbieter gehostet wird. Etwaige Verstöße der DSGVO-Auflagen seitens dieses deutschen Hosters können wir nicht feststellen und somit auch nicht verfolgen.
Wir halten Backups unserer Datenbanken, welche in regelmäßigen Abständen als Schutz vor Katastrophen, Hackerangriffen und sonstigen Ausfällen erstellt werden. Sollte ein Nutzer die Löschung seiner Daten wünschen, betrachten wir es als Unzumutbar die Backups auch von den Daten zu befreien, da es sich hierbei um eine mehrtägiges Unterfangen handelt - dies ist für eine Einzelperson beim Betrieb eines privaten Forums nicht zumutbar möglich ohne das Backup komplett zu löschen.
Sollten Sie etwas gegen die dauerhafte anonyme Speicherung ihrer EMail-Adresse, ihres Pseudonyms und ihrer Beiträge in einem Backup haben, sehen Sie von der Registrierung in diesem Forum ab. Für Mitglieder, welche vor dem 25.05.2018 registriert waren steht jedoch das Recht im Raum, eine Löschung der Datenbank-Backups zu beantragen.



Wenn dies Ihr erster Besuch hier ist, lesen Sie bitte zunächst die FAQs sowie die wesentlichen Regeln zur Benutzung des Forums.
Um an den Diskussionen teilnehmen zu können, müssen Sie sich zunächst registrieren.

Addition für Z, Q oder IR

Mathematische Fragestellungen
Antworten
Pippen
Ehrenmitglied
Ehrenmitglied
Beiträge: 1810
Registriert: 9. Jul 2010, 04:02

Addition für Z, Q oder IR

Beitrag von Pippen » 25. Jan 2016, 11:20

Die Addition wird ja für natürliche Zahlen durch zwei Peano-Axiome definiert, nämlich n + 0 = n und n+m' = (n+m)'. Damit kann man auch wirklich rechnen, zB 3 + 4, wenn es auch durch die Rekursion ziemlich schnell ziemlich aufwändig wird, aber die Addition wird jedenfalls korrekt und vollständig geregelt. Wo/Wie wird die Addition für Z, Q oder IR geregelt? Ich finde da nichts Analoges und die Körper- oder Ringaxiome erklären ja nicht, wie die Addition funktionieren soll.

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10472
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Addition für Z, Q oder IR

Beitrag von tomS » 25. Jan 2016, 20:28

Da rationale Zahlen im Wesentlichen identisch mit Brüchen sind, folgen die Rechenregeln aus der Bruchrechnung; und diese basiert ausschließlich auf den vier Grundrechenarten über den natürlichen Zahlen.

Reelle Zahlen können definiert werden als Dedekindsche Schnitte rationaler Zahlen, Äquivalenzklassen von Cauchy-Folgen rationaler Zahlen oder als Äquivalenzklassen von Intervallschachtelungen rationaler Intervalle; in allen Fällen folgen die Rechenregeln aus denen der rationaler Zahlen.
Gruß
Tom

Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Benutzeravatar
Marcel
wohnt hier!
wohnt hier!
Beiträge: 382
Registriert: 16. Nov 2014, 21:42

Re: Addition für Z, Q oder IR

Beitrag von Marcel » 26. Jan 2016, 08:35

Ein Körper wird ja mit einer Menge an Objekten (zum Beispiel die Rationalen Zahlen) einer addition und einer Multiplikation definiert. Man schreibt . Natürlich wird in dieser definition nicht erklärt was addition sowie auch multiplikation bei Körpern sind, da es eben allgemein gehalten werden soll. Man definiert sich zusätzlich zu der Menge an Objekten eine Abbildung gennant + die die addition beschreibt. Zum Beispiel ist folgendes eine Addition:

als Nachfolgerabbildung (von Neuman-zahlen ;))
Aber das kann halt auf jedem Körper, Gruppe , Ring anders sein ^^
Mit freundlichen Grüßen
Marcel

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10472
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Addition für Z, Q oder IR

Beitrag von tomS » 26. Jan 2016, 23:54

I.A. ist die Einführung einer Verknüpfung nicht-konstruktiv, in speziellen Fällen jedoch durchaus:
i) das einfachste Beispiel ist die Verknüpfung '+' für eine endliche Gruppe mittels einer Tabelle (ok, für Gruppen meist '*', aber das ist hier irrelevant);
ii) ein weiteres Beispiel wäre die Verknüpfung ⊕ für die relativistische Geschwindigkeitsaddition, die zwar für reelle Zahlen ]-1,+1[ definiert ist, jedoch nicht mit der normalen Addition '+' verwechselt werden darf, da sie eine Abbildung auf ]-1,+1[ und nicht auf R definiert;
iii) ein weiteres Beispiel sind Addition und Multiplikation auf den reellen Zahlen R, die aus Q und damit letztlich N bzw. Z konstruiert werden können.
Gruß
Tom

Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Benutzeravatar
Marcel
wohnt hier!
wohnt hier!
Beiträge: 382
Registriert: 16. Nov 2014, 21:42

Re: Addition für Z, Q oder IR

Beitrag von Marcel » 28. Jan 2016, 09:25

Jap Tom, da hast du Recht. MEin Beispiel war tatsächlich unpassend gewählt. Hatte in dem Moment nur gerade über von Neumannzahlen Nachgedacht, darum war das naheliegend :D
Allerding finde ich die "intuitiven" Definition über dein (i) additionstabellen etwas schwierig, da sie nicht wirklich definieren und für überabzählbare Körper dann doch nicht wirklich funktionieren.
Man sollte mEn, wenn man nach definitionen für additionen sucht, immer über den Weg der Abbildungen gehen.
Mit freundlichen Grüßen
Marcel

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10472
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Addition für Z, Q oder IR

Beitrag von tomS » 28. Jan 2016, 22:12

Marcel hat geschrieben:Allerding finde ich die "intuitiven" Definition über dein (i) additionstabellen etwas schwierig, da sie nicht wirklich definieren und für überabzählbare Körper dann doch nicht wirklich funktionieren.
Additionstabellen funktionieren natürlich nur für endliche Gruppen. Mir ging es ja nur darum, zu zeigen, dass es konstruktive Herangehensweisen gibt.
Gruß
Tom

Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Pippen
Ehrenmitglied
Ehrenmitglied
Beiträge: 1810
Registriert: 9. Jul 2010, 04:02

Re: Addition für Z, Q oder IR

Beitrag von Pippen » 2. Feb 2016, 00:59

Aha, also letztlich geht alles auf Peano's Additions- und Multiplikationsaxiome zurück.

Antworten