Hinweis auf die DSGVO: Auf unserer Seite werden keine Dritt-Anbieter-Cookies verwendet und nur Daten erfasst, welche für das Minimum an Board-Funktionalität notwendig sind.
Bevor Sie sich registrieren oder das Board verwenden, lesen Sie bitte zusätzlich die DSGVO-Erklärung, welche in der Navigationsleiste verlinkt ist.

Kurzfassung der unserer Meinung nach wichtigsten DSGVO-Punkte:
Es kann vorkommen, dass Benutzer eigenverantwortlich Videos oder sonstige Medien in ihren Beiträgen verlinken, welche beim Aufruf der Forenseite als Teil der Seite samt zugehörigem Material mitgeladen werden. Sollten Sie dies nicht wünschen, verwenden Sie beim Benutzen des Forums einen Blocker wie z.B. uMatrix, welcher das Laden von Inhaltsblöcken von Fremd-URLs effektiv unterbinden kann.
Wir blenden keine Werbung ein und schränken die Inhalte in keinster Weise bei Benutzung von Addblockern ein. Dadurch ist die Grundfunktionalität des Forums auch bei vollständigem Blockieren von Drittanbieter-Inhalten stets gegeben.

Cookies werden unsererseits nur verwendet um das Einloggen des Benutzers für die Dauer der Forenbenutzung zu speichern. Es steht dem Benutzer frei die Option 'Angemeldet bleiben' zu verwenden, damit der Cookie dauerhaft gespeichert bleibt und beim nächsten Besuch kein erneutes Einloggen mehr notwendig ist.
EMail-Adressen werden für Kontakt bei wichtigen Mitteilungen und zur Widerherstellung des Passwortes verwendet. Die verwendeten IPs können von uns ohne externe Hilfsmittel mit keiner realen Person in Verbindung gebracht werden und werden nach spätestens 7 Tagen gelöscht. Diese IPs werden höchstens verwendet um Neuanmeldungen unerwünschter oder gesperrter Nutzer zu identfizieren und zu unterbinden. Wir behalten uns daher vor bei Verdacht, die Frist für die IP-Löschung auf maximal 14 Tage zu verlängern.
Unsere Webseite läuft auf einem virtuellen Linux-Server, welcher von einem externen Anbieter gehostet wird. Etwaige Verstöße der DSGVO-Auflagen seitens dieses deutschen Hosters können wir nicht feststellen und somit auch nicht verfolgen.
Wir halten Backups unserer Datenbanken, welche in regelmäßigen Abständen als Schutz vor Katastrophen, Hackerangriffen und sonstigen Ausfällen erstellt werden. Sollte ein Nutzer die Löschung seiner Daten wünschen, betrachten wir es als Unzumutbar die Backups auch von den Daten zu befreien, da es sich hierbei um eine mehrtägiges Unterfangen handelt - dies ist für eine Einzelperson beim Betrieb eines privaten Forums nicht zumutbar möglich ohne das Backup komplett zu löschen.
Sollten Sie etwas gegen die dauerhafte anonyme Speicherung ihrer EMail-Adresse, ihres Pseudonyms und ihrer Beiträge in einem Backup haben, sehen Sie von der Registrierung in diesem Forum ab. Für Mitglieder, welche vor dem 25.05.2018 registriert waren steht jedoch das Recht im Raum, eine Löschung der Datenbank-Backups zu beantragen.



Wenn dies Ihr erster Besuch hier ist, lesen Sie bitte zunächst die FAQs sowie die wesentlichen Regeln zur Benutzung des Forums.
Um an den Diskussionen teilnehmen zu können, müssen Sie sich zunächst registrieren.

Unentscheidbare Probleme in der Physik

Quantenmechanik, Unschärfenrelation, Welle-Teilchen-Dualismus, Rechenmethoden sowie Interpretation der Quantenmechanik, Quantenfeldtheorie
Antworten
Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10114
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Unentscheidbare Probleme in der Physik

Beitrag von tomS » 31. Jan 2016, 13:58

Ich bin kürzlich auf folgende Artikel

http://www.nature.com/news/paradox-at-t ... le-1.18983
http://arxiv.org/abs/1502.04573

aufmerksam geworden. Das Ergebnis ist prinzipiell nicht überraschend, allerdings ist die konkrete Konstruktion schon beeindruckend.

Zusammenfassen lässt sich die Aussage wie folgt: es existieren quantenmechanische Modelle, für die die Frage, ob die Energielücke zwischen Grundzustand und erstem angeregten Zustand nicht entscheidbar bzw. Turing-berechenbar ist.

Die Autoren konstruieren dazu einen Hamiltonoperator (bzw. eine Klasse von Hamiltonoperatoren), wie man sie in ähnlicher (weniger exotischer) Form aus der Festkörperphysik kennt. Für diesen existiert beweisbar kein Algorithmus, der die Frage, ob eine Energielücke existiert, beantwortet. Man darf also spekulieren, ob unsere Welt (oder ein Teilproblem wie z.B. die QCD) durch ein vergleichbares System beschrieben wird (für die QCD entspricht dies gerade einem der Millenium prize problems). Wäre es möglich, dass die QCD in diese Klasse fällt? Wäre es möglich, dass die QCD real eine Energielücke aufweist (experimentell: bisher ja), dass ein Hamiltonoperator existiert, der sie korrekt beschreibt, dass jedoch genau für diesen Hamiltonoperator diese Frage unbeantwortbar ist? Wenn ja, was bedeutet dies für die Physik? Wir könnten schlimmstenfalls eine korrekte ToE formulieren, jedoch keine physikalischen Fragen beantworten bzw. berechnen ...
Gruß
Tom

«while I subscribe to the "Many Worlds" theory which posits the existence of an infinite number of Toms in an infinite number of universes, I assure you that in none of them am I dancing»

Analytiker
wohnt hier!
wohnt hier!
Beiträge: 407
Registriert: 3. Sep 2011, 17:18

Re: Unentscheidbare Probleme in der Physik

Beitrag von Analytiker » 31. Jan 2016, 15:39

Da stößt dann die Physik an ihre Grenzen. Die Mathematik hat ja auch ihre Grenzen. Was nützt mir eine Theorie, mit der ich nichts berechnen kann? Werden Fragestellungen nichtlinear, dann kommt man mit Näherungsverfahren noch weiter, aber je komplexer umso aufwändiger. Schon das deterministische Chaos erfordert enormen Rechenaufwand und das Quantenchaos noch mehr. Mit stochastischen Modellen kann man noch gewisse Abläufe einigermaßen abbilden. Solange die Rechenleistung von Computern noch steigt, wird man noch marginale Erkenntniszuwächse erzielen, die aber immer mehr abflachen.

Gruß
Analytiker

positronium
Ehrenmitglied
Ehrenmitglied
Beiträge: 2832
Registriert: 2. Feb 2011, 20:13

Re: Unentscheidbare Probleme in der Physik

Beitrag von positronium » 31. Jan 2016, 16:14

Die Tragweite des Ergebnisses dieser Untersuchung hängt wohl stark von der Einstellung des jeweiligen Lesers ab. Wer der Meinung ist, dass Natur=Mathematik gilt, wird wahrscheinlich geschockt sein. Ich sehe nur Gründe, die gegen diese "Gleichung" sprechen. Von daher nehme ich das recht entspannt auf: Dann kann man das halt nicht berechnen. Unschön, aber was soll's? Ich kann auch nicht pi bis zur letzten Nachkommastelle angeben; viele Probleme sind nicht und schon gar nicht exakt lösbar.

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10114
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Unentscheidbare Probleme in der Physik

Beitrag von tomS » 31. Jan 2016, 16:56

Na ja, es wäre schon erschütternd: die Theorie wäre vollständig bekannt, allerdings wäre vieles nicht berechenbar
Gruß
Tom

«while I subscribe to the "Many Worlds" theory which posits the existence of an infinite number of Toms in an infinite number of universes, I assure you that in none of them am I dancing»

Skeltek
Site Admin
Beiträge: 3493
Registriert: 25. Mär 2008, 23:51
Wohnort: Stuttgart, Germany
Kontaktdaten:

Re: Unentscheidbare Probleme in der Physik

Beitrag von Skeltek » 1. Feb 2016, 06:11

Ich frage mich, was an der Tatsache so überaschend neu sein soll.
Jede Theorie, welche sich auf die Schrödingergleichungen bezieht, muss mit denselben Implikationen leben.
Es wäre völlig idiotisch, die Schrödingergleichungen als untermauerndes Argument für ein Model zu verwenden und sich im Anschluss darüber zu wundern, dass die Gleichungen nur die ungestörten stabilen Zustände beschreiben.
Die Energielücke hat es nie gegeben - es handelt sich auch nicht wirklich um eine echte Lücke sondern eine "Ausdünnung" der Wahrscheinlichkeitsverteilung in diesem Zustandsbereich.
Es ist meiner ansicht nach völlig klar, dass sich unter ganz bestimmten Umständen in Extremfällen diese "Lücke" schließt.
Meines Wissens nach sagen die Schrödingergleichungen kaum etwas über das Verhalten der Teilchen im Zwischenzustand. Sie sagen lediglich aus, welche die störungsfrei energetisch tiefsten Zustände sind.

Ich bin kein Physiker, daher ist die Korrektheit meiner verwendeten Terminologie unter aller Sau, aber ich denke die grundlegenden geometrischen Zusammenhänge, Differentiale und Zusammenhänge soweit verstanden um selbst mit meinem unprofessionellen Wissen schon schließen zu können, dass die Determinierbarkeit der Existenz einer Lücke der Energieniveaus in gewissen Situationen nicht determinierbar ist.
"Le's do it now. Le's make the world bedda"
'Sure, right now. I gotta. We gotta"

Unentscheidbarkeit für Dummies: Dieser Satz ist wahr

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 10114
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Unentscheidbare Probleme in der Physik

Beitrag von tomS » 1. Feb 2016, 07:03

Skeltek hat geschrieben:... und sich im Anschluss darüber zu wundern, dass die Gleichungen nur die ungestörten stabilen Zustände beschreiben.
Die SGL beschreibt alle Zustände
Skeltek hat geschrieben:.Die Energielücke hat es nie gegeben - es handelt sich auch nicht wirklich um eine echte Lücke sondern eine "Ausdünnung" der Wahrscheinlichkeitsverteilung in diesem Zustandsbereich.
Natürlich gibt es die Energielücke. Und sie hat nichts mit der Wahrscheinlichkeitsverteilung im Ortsraum zu tun; es handelt sich um eine Eigenschaft des Soektrums im Energieraum.

(z.B. beobachten wir bei der QCD eine Massenlücke: Pionmasse > 0, in der QED nicht: Photonmasse = 0.
Skeltek hat geschrieben:Meines Wissens nach sagen die Schrödingergleichungen kaum etwas über das Verhalten der Teilchen im Zwischenzustand. Sie sagen lediglich aus, welche die störungsfrei energetisch tiefsten Zustände sind.
Das stimmt doch nicht. Die SGL beschreibt das Spektrum und die zugehörigen Eigenzustände vollständig.

Ich habe den Eindruck, du hast nicht verstanden, was die SGL und die Lücke im Spektrum bedeutet.
Gruß
Tom

«while I subscribe to the "Many Worlds" theory which posits the existence of an infinite number of Toms in an infinite number of universes, I assure you that in none of them am I dancing»

Skeltek
Site Admin
Beiträge: 3493
Registriert: 25. Mär 2008, 23:51
Wohnort: Stuttgart, Germany
Kontaktdaten:

Re: Unentscheidbare Probleme in der Physik

Beitrag von Skeltek » 1. Feb 2016, 07:54

Sorry, da habe ich mich unklar ausgedrückt; ich meinte eher die Spezialfälle der Schrödingergleichung.
Die Energieniveaus werden berechnet aus den Zuständen bei denen sich das Betragsquadrat der Wellenfunktion zeitlich nicht ändert. Das sind Spezialfälle der Schrödingergleichung.
Natürlich beschreiben die SGLs das Spektrum und zugehörigen Eigenzustände vollständig, das ändert aber nichts daran, dass es zwischen den Energieniveaus auch Zustände gibt, in denen sich das Betragsquadrat zeitlich ändert. Diese Zustände sind in der Regel nur temporär oder zumindest unwahrscheinlicher durch Quantenfluktuationen kurzfristig herzustellen.

Soweit ich das Paper verstanden habe kann man die Energiniveaus so weit zusammen pressen, dass selbst beliebig kleine Störungen das System von einem zum anderen Zustand befördern.
Fasst man das Wellenmodel als Mehrkörperproblem mit unendlich vielen Teilchen auf, ergibt sich hier ein Mischzustand bei dem die beiden Zustände nicht unterscheidbar sind. (<- das war jetzt meine eigener Senf von oben)

Sorry, dass ich zu wenig Zeit habe das richtig durchzuformulieren; hoffe es ist ein wenig klarer was ich sagen wollte?
Gruß, Skel
"Le's do it now. Le's make the world bedda"
'Sure, right now. I gotta. We gotta"

Unentscheidbarkeit für Dummies: Dieser Satz ist wahr

Benutzeravatar
seeker
Ehrenmitglied
Ehrenmitglied
Beiträge: 5867
Registriert: 26. Dez 2009, 10:29

Re: Unentscheidbare Probleme in der Physik

Beitrag von seeker » 1. Feb 2016, 11:50

tomS hat geschrieben:Na ja, es wäre schon erschütternd: die Theorie wäre vollständig bekannt, allerdings wäre vieles nicht berechenbar
Ja, was würde DAS bedeuten?
Das kann schon erschütternd sein, wenn man an ein bestimmtes Paradigma glaubt.
Ich bin da bei positronium. Wenn es nicht berechennbar ist, im Sinne von nicht eindeutig, heißt das dann, dass die Natur an der Stelle nicht eindeutig-determiniert IST?
Oder heißt es, dass die Mathematik die Determiniertheit der Natur prinzipiell nicht erfassen kann? Aber wie sollte das möglich sein?
Beträfe das dann nur unsere Mathematik oder die Mathematik? Und die Mathematik wäre dann prinzipiell für uns unerkennbar?

Ist die Physik eine exakte Wissenschaft?

Fragen über Fragen...

Gruß
seeker
Grüße
seeker


Mache nie eine Theorie zu DEINER Theorie!
Denn tut man das, so verliert man zumindest ein Stück weit seine Unvoreingenommenheit, Objektivität.

Antworten