Hinweis auf die DSGVO: Auf unserer Seite werden keine Dritt-Anbieter-Cookies verwendet und nur Daten erfasst, welche für das Minimum an Board-Funktionalität notwendig sind.
Bevor Sie sich registrieren oder das Board verwenden, lesen Sie bitte zusätzlich die DSGVO-Erklärung, welche in der Navigationsleiste verlinkt ist.

Kurzfassung der unserer Meinung nach wichtigsten DSGVO-Punkte:
Es kann vorkommen, dass Benutzer eigenverantwortlich Videos oder sonstige Medien in ihren Beiträgen verlinken, welche beim Aufruf der Forenseite als Teil der Seite samt zugehörigem Material mitgeladen werden. Sollten Sie dies nicht wünschen, verwenden Sie beim Benutzen des Forums einen Blocker wie z.B. uMatrix, welcher das Laden von Inhaltsblöcken von Fremd-URLs effektiv unterbinden kann.
Wir blenden keine Werbung ein und schränken die Inhalte in keinster Weise bei Benutzung von Addblockern ein. Dadurch ist die Grundfunktionalität des Forums auch bei vollständigem Blockieren von Drittanbieter-Inhalten stets gegeben.

Cookies werden unsererseits nur verwendet um das Einloggen des Benutzers für die Dauer der Forenbenutzung zu speichern. Es steht dem Benutzer frei die Option 'Angemeldet bleiben' zu verwenden, damit der Cookie dauerhaft gespeichert bleibt und beim nächsten Besuch kein erneutes Einloggen mehr notwendig ist.
EMail-Adressen werden für Kontakt bei wichtigen Mitteilungen und zur Widerherstellung des Passwortes verwendet. Die verwendeten IPs können von uns ohne externe Hilfsmittel mit keiner realen Person in Verbindung gebracht werden und werden nach spätestens 7 Tagen gelöscht. Diese IPs werden höchstens verwendet um Neuanmeldungen unerwünschter oder gesperrter Nutzer zu identfizieren und zu unterbinden. Wir behalten uns daher vor bei Verdacht, die Frist für die IP-Löschung auf maximal 14 Tage zu verlängern.
Unsere Webseite läuft auf einem virtuellen Linux-Server, welcher von einem externen Anbieter gehostet wird. Etwaige Verstöße der DSGVO-Auflagen seitens dieses deutschen Hosters können wir nicht feststellen und somit auch nicht verfolgen.
Wir halten Backups unserer Datenbanken, welche in regelmäßigen Abständen als Schutz vor Katastrophen, Hackerangriffen und sonstigen Ausfällen erstellt werden. Sollte ein Nutzer die Löschung seiner Daten wünschen, betrachten wir es als Unzumutbar die Backups auch von den Daten zu befreien, da es sich hierbei um eine mehrtägiges Unterfangen handelt - dies ist für eine Einzelperson beim Betrieb eines privaten Forums nicht zumutbar möglich ohne das Backup komplett zu löschen.
Sollten Sie etwas gegen die dauerhafte anonyme Speicherung ihrer EMail-Adresse, ihres Pseudonyms und ihrer Beiträge in einem Backup haben, sehen Sie von der Registrierung in diesem Forum ab. Für Mitglieder, welche vor dem 25.05.2018 registriert waren steht jedoch das Recht im Raum, eine Löschung der Datenbank-Backups zu beantragen.



Wenn dies Ihr erster Besuch hier ist, lesen Sie bitte zunächst die FAQs sowie die wesentlichen Regeln zur Benutzung des Forums.
Um an den Diskussionen teilnehmen zu können, müssen Sie sich zunächst registrieren.

Unvollständigkeitsbeweise richtig skizziert?

Mathematische Fragestellungen
Antworten
Pippen
Ehrenmitglied
Ehrenmitglied
Beiträge: 1675
Registriert: 9. Jul 2010, 04:02

Unvollständigkeitsbeweise richtig skizziert?

Beitrag von Pippen » 12. Dez 2016, 03:41

Ich habe mal versucht, den groben Gedankengang der Gödelschen Unvollständigkeitsbeweise zu skizzieren ohne mich in dessen Beweisdetails zu verlieren. Wie ist mir das gelungen (es sollte selbst ein Laie verstehen können)?
1. Unvollständigkeitssatz

Gegeben sei ein konsistentes formales S(ystem), mit dem wir folgende Aussage konstruieren können: G: G ist unbeweisbar.
Nun gibt es zwei mögliche Fälle:

a) G ist beweisbar, doch dann ist G unbeweisbar, Widerspruch,
b) ~G ist beweisbar, d.h. es gilt: ~G: G ist beweisbar, d.h. G wäre beweisbar und damit wären G und ~G beweisbar, Widerspruch.

Wir können also in S weder G noch ~G beweisen, S ist unvollständig.

2. Unvollständigkeitssatz

Sei S in der Lage, den 1. Unvollständigkeitssatz zu formulieren, also: Wenn S konsistent ist, dann sind G und ~G in S unbeweisbar.
Nehmen wir an, S könnte die eigene Konsistenz beweisen.
Dann folgt mit modus ponens der Beweis dafür, dass G und ~G in S unbeweisbar sind, was ein Widerspruch wäre, so dass die Konsistenzannahme falsch sein muss.

Antworten