Hinweis auf die DSGVO: Auf unserer Seite werden keine Dritt-Anbieter-Cookies verwendet und nur Daten erfasst, welche für das Minimum an Board-Funktionalität notwendig sind.
Bevor Sie sich registrieren oder das Board verwenden, lesen Sie bitte zusätzlich die DSGVO-Erklärung, welche in der Navigationsleiste verlinkt ist.

Kurzfassung der unserer Meinung nach wichtigsten DSGVO-Punkte:
Es kann vorkommen, dass Benutzer eigenverantwortlich Videos oder sonstige Medien in ihren Beiträgen verlinken, welche beim Aufruf der Forenseite als Teil der Seite samt zugehörigem Material mitgeladen werden. Sollten Sie dies nicht wünschen, verwenden Sie beim Benutzen des Forums einen Blocker wie z.B. uMatrix, welcher das Laden von Inhaltsblöcken von Fremd-URLs effektiv unterbinden kann.
Wir blenden keine Werbung ein und schränken die Inhalte in keinster Weise bei Benutzung von Addblockern ein. Dadurch ist die Grundfunktionalität des Forums auch bei vollständigem Blockieren von Drittanbieter-Inhalten stets gegeben.

Cookies werden unsererseits nur verwendet um das Einloggen des Benutzers für die Dauer der Forenbenutzung zu speichern. Es steht dem Benutzer frei die Option 'Angemeldet bleiben' zu verwenden, damit der Cookie dauerhaft gespeichert bleibt und beim nächsten Besuch kein erneutes Einloggen mehr notwendig ist.
EMail-Adressen werden für Kontakt bei wichtigen Mitteilungen und zur Widerherstellung des Passwortes verwendet. Die verwendeten IPs können von uns ohne externe Hilfsmittel mit keiner realen Person in Verbindung gebracht werden und werden nach spätestens 7 Tagen gelöscht. Diese IPs werden höchstens verwendet um Neuanmeldungen unerwünschter oder gesperrter Nutzer zu identfizieren und zu unterbinden. Wir behalten uns daher vor bei Verdacht, die Frist für die IP-Löschung auf maximal 14 Tage zu verlängern.
Unsere Webseite läuft auf einem virtuellen Linux-Server, welcher von einem externen Anbieter gehostet wird. Etwaige Verstöße der DSGVO-Auflagen seitens dieses deutschen Hosters können wir nicht feststellen und somit auch nicht verfolgen.
Wir halten Backups unserer Datenbanken, welche in regelmäßigen Abständen als Schutz vor Katastrophen, Hackerangriffen und sonstigen Ausfällen erstellt werden. Sollte ein Nutzer die Löschung seiner Daten wünschen, betrachten wir es als Unzumutbar die Backups auch von den Daten zu befreien, da es sich hierbei um eine mehrtägiges Unterfangen handelt - dies ist für eine Einzelperson beim Betrieb eines privaten Forums nicht zumutbar möglich ohne das Backup komplett zu löschen.
Sollten Sie etwas gegen die dauerhafte anonyme Speicherung ihrer EMail-Adresse, ihres Pseudonyms und ihrer Beiträge in einem Backup haben, sehen Sie von der Registrierung in diesem Forum ab. Für Mitglieder, welche vor dem 25.05.2018 registriert waren steht jedoch das Recht im Raum, eine Löschung der Datenbank-Backups zu beantragen.



Wenn dies Ihr erster Besuch hier ist, lesen Sie bitte zunächst die FAQs sowie die wesentlichen Regeln zur Benutzung des Forums.
Um an den Diskussionen teilnehmen zu können, müssen Sie sich zunächst registrieren.

Komplexe Zahlen

Mathematische Fragestellungen
Antworten
Pippen
Ehrenmitglied
Ehrenmitglied
Beiträge: 1722
Registriert: 9. Jul 2010, 04:02

Komplexe Zahlen

Beitrag von Pippen » 29. Sep 2012, 00:55

Ich verstehe da was nicht bei komplexen Zahlen. Eine komplexe Zahl i wird zB für "i²=-1" gesetzt. Das kann ja aber nicht sein, denn das Quadrat einer Zahl ist immer positiv, ist also falsch oder würde zu Widersprüchen führen. Das heißt doch aber, dass das Rechnen mit komplexen Zahlen heißt, dass man mit Widersprüchlichem weiterrechnet...geht das denn so einfach? Denn in der klass. Logik, die der Math. zugrundeliegt, gilt, dass aus Widersprüchen alles folgt und sie logisch falsch sind. Wieso "klappt" dann das Rechnen bzw. die Installation der komplexen Zahlen überhaupt?

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 9815
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Komplexe Zahlen

Beitrag von tomS » 29. Sep 2012, 02:14

Das Quadrat einer reellen Zahl ist immer positiv, aber i ist keine reelle Zahl. Man erweitert einfach den Zahlenbereich, das führt nicht zu Widersprüchen.

Man kann ja z.B. auch sagen "das Produkt ab zweier Zahlen a und b ist nie Null, wenn nicht eine der beiden Zahlen a oder b selbst Null ist". Und dann stellt man fest, dass das Produkt zweier Vektoren durchaus Null sein kann, nämlich dann, wenn sie aufeinander senkrecht stehen. Aber das ist kein Widerspruch, denn Vektoren sind eben nicht einfach Zahlen, sondern etwas Neues.

Genauso ist das mit den komplexen Zahlen.
Gruß
Tom

«while I subscribe to the "Many Worlds" theory which posits the existence of an infinite number of Toms in an infinite number of universes, I assure you that in none of them am I dancing»

rick
übernimmt bald das Forum
übernimmt bald das Forum
Beiträge: 279
Registriert: 19. Mai 2011, 22:06

Re: Komplexe Zahlen

Beitrag von rick » 29. Sep 2012, 03:38

Irgendwo im Forum gibt es auch eine kleine Einführung zu den komplexen Zahlen. Und natürlich ist hier auch die Frage, warum das Quadrat einer Zahl immer positiv sein muss :) (oder nicht ;D).

breaker
Ehrenmitglied
Ehrenmitglied
Beiträge: 1539
Registriert: 14. Jan 2006, 18:23

Re: Komplexe Zahlen

Beitrag von breaker » 29. Sep 2012, 10:52

Ich glaube, wenn man streng beweisen will, dass das Produkt zweier negativer Zahlen immer positiv ist, dann wird's sehr abstrakt. Die entscheidende Frage hier ist, wie die reellen Zahlen konstruiert sind (und um zu verstehen, warum i=-1 kein Widerspruch ist, ist es entscheidend zu wissen, wie die konplexen Zahlen konstruiert sind).
Die Konstruktion der reellen und komplexen Zahlen sollte eigentlich in jedem Analysis 1-Buch zu finden sein (das Buch von Amann und Escher sollte da relativ gründlich sein).

Ohne so tief einzusteigen, kann ich nur das gleiche antworten, wie Tom: Die Zahl i ist eben keine der bereits bekannten reellen Zahlen, sondern was neues und deshalb gilt hier nicht die Regel, dass das Quadrat immer positiv ist. Und da komplexe Zahlen etwas neues sind, sind für sie auch nicht a priori irgendwelche Rechenregeln vorgegeben, d.h. man muss selbst Regeln definieren. Diese werden dann gerade so definiert, dass keine Widersprüche entstehen.

rick
übernimmt bald das Forum
übernimmt bald das Forum
Beiträge: 279
Registriert: 19. Mai 2011, 22:06

Re: Komplexe Zahlen

Beitrag von rick » 29. Sep 2012, 14:58

breaker hat geschrieben:Ich glaube, wenn man streng beweisen will, dass das Produkt zweier negativer Zahlen immer positiv ist, dann wird's sehr abstrakt. Die entscheidende Frage hier ist, wie die reellen Zahlen konstruiert sind (und um zu verstehen, warum i=-1 kein Widerspruch ist, ist es entscheidend zu wissen, wie die konplexen Zahlen konstruiert sind).
Das kann man direkt über die Ordnung des Körpers zeigen. Und in den komplexen Zahlen gibts eben keine, bzw. es kann keine definiert werden. Das sollte auch in den meisten Analysis Büchern drin stehen.

Antworten