Lagrange - "ungewollter" Übergang zu konj. Impuls

Allgemeine physikalische Fragestellungen, z.B. Newtonsche Mechanik, Elektrodynamik, Thermodynamik...
Antworten
Raskolnikow
Rookie
Beiträge: 7
Registriert: 19. Jan 2016, 20:12

Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von Raskolnikow » 19. Mai 2017, 14:56

Hallo,
mir ist eben Folgendes aufgefallen:
Wenn ich von einer Lagrangefunktion

für ein Punktteilchen ausgehe, kann ich und als unabhäng betrachten, wenn ich eine Art Lagrangemultiplikator p einfüge,

sodass die Beziehung als Bewegungsgleichung für p implementiert ist.
Jetzt liefert die BWG für uns und man kann (nach partieller Integration) schreiben
.
Offensichtlich ist p der kan. konj. Impuls und wenn ich wieder identifiziere, erhalte ich natürlich wieder
bzw.
und um ehrlich zu sein kann ich auch keine konkrete Frage formulieren, ich wundert nur ein bisschen, warum ich hier (ohne, dass das intendiert war) von Koord. übergehe?

Benutzeravatar
positronium
Ehrenmitglied
Ehrenmitglied
Beiträge: 2430
Registriert: 2. Feb 2011, 20:13

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von positronium » 19. Mai 2017, 15:19

Deiner Rechnung kann ich leider nicht ganz folgen, aber es ist doch nicht verwunderlich, dass das funktioniert:
Raskolnikow hat geschrieben:
19. Mai 2017, 14:56
...von Koord. übergehe?

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 8404
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von tomS » 19. Mai 2017, 15:29

Ich sehe nicht, wie du in



die beiden Ausdrücke und rein mathematisch unterscheiden willst.
Gruß
Tom

Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen ist.

Raskolnikow
Rookie
Beiträge: 7
Registriert: 19. Jan 2016, 20:12

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von Raskolnikow » 19. Mai 2017, 15:31

Liebes Positronium,
nicht prinzipiell. Bloß deshalb ein bisschen, weil ich p (die Bezeichnung ist natürlich suggestiv) als Lagrangemultiplikator für eingefügt habe, was ja a priori noch nichts mit einem Impuls zu tun hat.

@TomS indemm ich einfach als eine Größe betrachte, die von q unabhängig ist, nicht als Ableitung, ich könnte sie ja auch umbenennen.

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 8404
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von tomS » 19. Mai 2017, 15:58

Ah, OK, also ein neues Symbol. Ist es ein verallgemeinerter Ort oder eine verallgemeinerte Geschwindigkeit? Benenne sie doch so um, dass man das erkennt.
Gruß
Tom

Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen ist.

Skeltek
Ehrenmitglied
Ehrenmitglied
Beiträge: 2740
Registriert: 25. Mär 2008, 23:51

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von Skeltek » 20. Mai 2017, 03:12

Geschickt gekürzt nehme ich an.
Klar sind die Wahlen der Initialwerte von q und der Ableitung zunächst unabhängig.
Verstehe eher die Frage nicht wie du darauf kommst, dass der Impuls nichts damit zu tun habe...
Dachte die Gleichung wäre deshalb so universel, weil sie die Inertialsystem-bedingte Diskrepanz zwischen Weg- und Zeitvektoren nicht berücksichtigen muss, hatte mich aber bisher nur flüchtig damit auseinander gesetzt.
Die plausibelste Erklaerung jedes hinreichend komplizierten Systems ist falsch

Unentscheidbarkeit für Dummies: Dieser Satz ist wahr
oder
Diese Menge hat zwei Elemente: A und B

Raskolnikow
Rookie
Beiträge: 7
Registriert: 19. Jan 2016, 20:12

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von Raskolnikow » 20. Mai 2017, 11:26

@Tom q eine Ortskoordinate , eine Geschwindigkeit.
@Skeltek Ich bin nicht ganz sicher, dass ich verstehe, was du meinst. q und sollen in der Wirkung unabhängige Größen sein, von mir aus können wir letzteres als bezeichnen, und den Lagrangemultiplikator p habe ich eingefügt, um als Bewegungsgleichung für p zu erhalten.

Anderes Beispiel:
Betrachten wir eine masselose 2-Form mit Feldstärke und einer Kopplung an eine 1-Form J in 4-dim. Minkowskiraum:

Also wie oben: kinetischer Term + Kopplung. Ich lass das Integralzeichen jetzt wieder weg. Da kann ich auch H als von B unabhängige 3-Form betrachten (also nicht H=dB), wenn ich da einen Skalar als Lagrangemultiplikator einführe in der Form
.
Dann lautet die BWG für H
und ich kann die Wirkung als

schreiben, was zu erwarten war, wenn man weiß, dass eine masselose 2-Form (in 4 Dim.) dual zu einem Skalar ist.

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 8404
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von tomS » 20. Mai 2017, 11:46

Also wenn dot q und dq/dt unabhängig sein sollen, dann schlage ich folgende übersichtlichere Notation vor:



Der zweite verallgemeinerte Ort r kommt nicht vor, so wie ich dich verstehe. lambda ist dein Lagrangemultiplikator. q,r sind unabhängig, das wird schon allein aufgrund der Wahl der Buchstaben klar.

Ein p oder v einzuführen halte ich für unübersichtlich, da bei v der Bezug zum Ort fehlt - welcher ist es denn? - und da p einen kanonisch konjugierten Impuls signalisiert, keinen Lagrangemultiplikator.

Wie sie das L dann genau aus?
Gruß
Tom

Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen ist.

Raskolnikow
Rookie
Beiträge: 7
Registriert: 19. Jan 2016, 20:12

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von Raskolnikow » 20. Mai 2017, 12:18

Ok, dann einmal

als Ausgangspunkt und

als Lagrangefunktion, in der nicht ist. Wenn ich die Wirkung nach der neu eingeführten Größe variiere, erhalte ich aber die Beziehung .
Wenn ich nach variiere, erhalte ich als Bewegungsgleichung (deshalb habe ich es suggestiv "p" genannt) und Variation nach q liefert .
Was ich vorhin noch gemacht habe, war in L durch seine Bewegungsgleichung zu eliminieren.

Benutzeravatar
tomS
Administrator
Administrator
Beiträge: 8404
Registriert: 19. Nov 2007, 20:29
Wohnort: Nürnberg

Re: Lagrange - "ungewollter" Übergang zu konj. Impuls

Beitrag von tomS » 20. Mai 2017, 14:04

Das sieht für mich völlig OK aus.

Üblicherweise eliminiert man überflüssige Freiheitsgrade; du führst hier künstlich einen ein. Das ist letztlich nur die umgekehrte Vorgehensweise und mathematisch in Ordnung.

Du könntest das z.B. auch für eine Eichtheorie tun: nimmt H in eichfixierter Form, Legendre-Rücktransformation auf L, Einführen der eliminierten Eichfreiheiten, ursprüngliche Lagrangedichte der Elektrodynamik.

Du solltest nur vorsichtig sein, welche Lösung der Bewegungsgleichung du wann in L einsetzt; teilweise verlierst du durch zu frühes Einsetzen Bewegungsgleichungen.
Gruß
Tom

Er muss sozusagen die Leiter wegwerfen, nachdem er auf ihr hinaufgestiegen ist.

Antworten

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder und 2 Gäste